392
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Kim, J. M., Sasaki, T., Ueda, M., Sako, K., & Seki, M., (2015). Chromatin changes in response
to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci., 6, 114.
Kim, J. M., To, T. K., Ishida, J., Matsui, A., Kimura, H., & Seki, M., (2012). Transition
of chromatin status during the process of recovery from drought stress in Arabidopsis
thaliana. Plant Cell Physiol., 53(5), 847–856.
Kim, Y. K., Chae, S., Oh, N. I., Nguyen, N. H., & Cheong, J. J., (2020). Recurrent drought
conditions enhance the induction of drought stress memory genes in Glycine max L. Front.
Genet., 11, 1248.
Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhaes, J. V., (2015). Plant adaptation to
acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol., 66,
571–598.
Kong, L., Liu, Y., Wang, X., & Chang, C., (2020). Insight into the role of epigenetic processes
in abiotic and biotic stress response in wheat and barley. Int. J. Mol. Sci., 21(4), 1480.
Kotagiri, D., & Kolluru, V. C., (2017). Effect of salinity stress on the morphology and
physiology of five different Coleus species. Biomed. Pharmacol., 10(4), 1639–1649.
Kouzarides, T., (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.
Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S. J., Kovalchuk, I., & Pogribny,
I., (2003). Genome hypermethylation in Pinus silvestris of chernobyl—A mechanism for
radiation adaptation? Mutat. Res-Fund Mol. M., 529(1, 2), 13–20.
Kumar, S., Beena, A. S., Awana, M., & Singh, A., (2017). Salt-induced tissue-specific cytosine
methylation downregulates expression of HKT genes in contrasting wheat (Triticum
aestivum L.) genotypes. DNA Cell Biol., 36(4), 283–294.
Kurdyukov, S., & Bullock, M., (2016). DNA methylation analysis: Choosing the right method.
Biology (Basel), 5(1).
Kwon, C. S., Lee, D., Choi, G., & Chung, W. I., (2009). Histone occupancy‐dependent and‐
independent removal of H3K27 trimethylation at cold‐responsive genes in Arabidopsis.
Plant J., 60(1), 112–121.
Lämke, J., & Bäurle, I., (2017). Epigenetic and chromatin-based mechanisms in environmental
stress adaptation and stress memory in plants. Genome Biol., 18(1), 1–11.
Lämke, J., Brzezinka, K., & Bäurle, I., (2016). HSFA2 orchestrates transcriptional dynamics
after heat stress in Arabidopsis thaliana. Transcription, 7(4), 111–114.
Lämke, J., Brzezinka, K., Altmann, S., & Bäurle, I., (2016). A hit‐and‐run heat shock factor
governs sustained histone methylation and transcriptional stress memory. EMBO J., 35(2),
162–175.
Lang-Mladek, C., Popova, O., Kiok, K., Berlinger, M., Rakic, B., Aufsatz, W., Jonak, C., et
al., (2010). Transgenerational inheritance and resetting of stress-induced loss of epigenetic
gene silencing in Arabidopsis. Mol. Plant., 3(3), 594–602.
Law, J. A., & Jacobsen, S. E., (2010). Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat. Rev. Genet., 11(3), 204–220.
Lebedeva, M., Tvorogova, V., & Tikhodeyev, O., (2017). Epigenetic mechanisms and their
role in plant development. Russ. J. Genet., 53(10), 1057–1071.
Lee, H. G., & Seo, P. J., (2019). MYB96 recruits the HDA15 protein to suppress negative
regulators of ABA signaling in Arabidopsis. Nat. Commun., 10(1), 1713.
Lee, K., & Seo, P. J., (2018). Dynamic epigenetic changes during plant regeneration. Trends
Plant Sci., 23(3), 235–247.